Published in

Public Library of Science, PLoS ONE, 3(10), p. e0120388, 2015

DOI: 10.1371/journal.pone.0120388

Links

Tools

Export citation

Search in Google Scholar

A Genome-Wide Scan Reveals Important Roles of DNA Methylation in Human Longevity by Regulating Age-Related Disease Genes

Journal article published in 2015 by Fu-Hui Xiao ORCID, Yong-Han He, Qi-Gang Li, Huan Wu, Qing-Peng Kong, Long-Hai Luo
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

It is recognized that genetic factors contribute to human longevity. Besides the hypothesis of existence of longevity genes, another suggests that a lower frequency of risk alleles decreases the incidence of age-related diseases in the long-lived people. However, the latter finds no support from recent genetic studies. Considering the crucial role of epigenetic modification in gene regulation, we then hypothesize that suppressing disease-related genes in longevity individuals is likely achieved by epigenetic modification, e.g. DNA methylation. To test this hypothesis, we investigated the genome-wide methylation profile in 4 Chinese female centenarians and 4 middle-aged controls using methyl-DNA immunoprecipitation se-quencing. 626 differentially methylated regions (DMRs) were observed between both groups. Interestingly, genes with these DMRs were enriched in age-related diseases, including type-2 diabetes, cardiovascular disease, stroke and Alzheimer's disease. This pattern remains rather stable after including methylomes of two white individuals. Further analyses suggest that the observed DMRs likely have functional roles in regulating disease associated gene expressions, with some genes [e.g. caspase 3 (CASP3)] being down-regulated whereas the others [i.e. interleukin 1 receptor, type 2 (IL1R2)] up-regulated. Therefore, our study suggests that suppressing the disease-related genes via epigenetic modification is an important contributor to human longevity.