Published in

American Association for Cancer Research, Cancer Research, 20(70), p. 7800-7809, 2010

DOI: 10.1158/0008-5472.can-10-1681

Links

Tools

Export citation

Search in Google Scholar

Conditional Regulatory T-Cell Depletion Releases Adaptive Immunity Preventing Carcinogenesis and Suppressing Established Tumor Growth

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Foxp3 is a central control element in the development and function of regulatory T cells (Treg), and mice expressing a diphtheria toxin (DT) receptor–enhanced green fluorescent protein fusion protein under the control of the foxp3 gene locus (DEREG mice) allow conditional and efficient depletion of Foxp3+ Treg by DT injection. Herein, we use DEREG mice and a mouse model of carcinogenesis to show that conditional and effective Treg depletion can both protect mice from carcinogenesis by innate control, yet permanently eradicate a proportion of de novo–established tumors in mice in a largely CD8+ T-cell– and IFN-γ–dependent manner. Tumors displayed a heterogeneous response to Treg depletion, and suppression of established tumors was accompanied by an increase in the tumor-infiltrating CD8+ T-cell/B-cell ratio. Tumor rejection occurred in the absence of overt autoimmunity, suggesting that effective transient Treg depletion strategies may be therapeutic in at least a proportion of spontaneous tumors developing in the host. Cancer Res; 70(20); 7800–9. ©2010 AACR.