Published in

Elsevier, Separation and Purification Technology, (160), p. 28-42, 2016

DOI: 10.1016/j.seppur.2016.01.009

Links

Tools

Export citation

Search in Google Scholar

TiO2/BiOX (X=Cl, Br, I) hybrid microspheres for artificial waste water and real sample treatment under visible light irradiation

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The hybridization of two different materials is important for achieving improved photocatalytic degradation properties. Generally, photocatalysts do not show good linear catalytic performance toward all the dyes. This paper reports the synthesis of nano-assembled TiO2/BiOX (X = Cl, Br, or I) hybrid microspheres, which were confirmed by powder X-ray diffraction, field emission scanning electron microscopy, electron transmission microscopy, UV–visible spectroscopy, Fourier-transform infrared spectroscopy, and photoluminescence spectroscopy. The synthesized photocatalysts were examined extensively for their photocatalytic activities with single (orange G and tartrazine), mixed dyes (methyl orange + rhodamine B + methylene blue), natural dyes extracted from grapes and cabbages (real sample analysis) as well as a commercially available drink with and without H2O2 addition under visible light irradiation. For the mixed dyes, TiO2/BiOI showed the highest adsorption capacity and TiO2/BiOCl showed the highest photocatalytic activity. Methyl orange in the mixed dyes was the most rapidly photodegraded of all the photocatalysts examined. TiO2/BiOI showed the highest photocatalytic activity for orange G and tartrazine. The three different photocatalysts showed effective and uniform degradation activity to the natural dyes obtained from grapes and cabbages. The dye degradation was enhanced by H2O2 addition.