Dissemin is shutting down on January 1st, 2025

Published in

American Chemical Society, Environmental Science and Technology, 12(40), p. 3730-3735, 2006

DOI: 10.1021/es0602142

Links

Tools

Export citation

Search in Google Scholar

Origin of PCDDs in Ball Clay Assessed with Compound-Specific Chlorine Isotope Analysis and Radiocarbon Dating

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Polychlorinated dibenzo-p-dioxins (PCDDs) of high concentrations in a ball clay deposit from the Mississippi Embayment were found to be consistent with a natural abiotic and non-pyrogenic origin by investigation with bulk radiocarbon analysis, compound-specific chlorine isotope analysis (CSIA-delta37Cl) of octachlorodibenzo-p-dioxin (OCDD), and black carbon (BC) analysis. The conventional radiocarbon date of total organic carbon from a depth of approximately 10 m in three parallel cores ranged from 14 700 years to >48 000 years, indicating that the strata with elevated levels of PCDDs have remained isolated from recent anthropogenic input in these >40 Ma old clay sediments. The CSIA-delta37Cl of OCDD yielded a delta37Cl of -0.2 per thousandth, which is significantly higher than the postulated range for biotic chlorination by chloroperoxidase enzymes, -11 to -10 per thousandth, and falls within the known range for abiotic organochlorines, -6 to +3 per thousandth. The absence of correlations between concentrations of PCDDs and corresponding pyrogenic black carbon (BC), together with estimations of BC sorptive loadings and the absence of polychlorinated dibenzofurans (PCDFs), suggest that vegetation fires did not form these ball-clay PCDDs. Results from this study indicate that the high levels of the toxic and carcinogenic PCDDs found in kaolinite-bearing clays may result from natural abiotic formation via in situ surface-promoted reactions on the clay mineral, including a so-far unknown organic precursor, rather than being the result of anthropogenic contamination.