Published in

Elsevier, Geochimica et Cosmochimica Acta, 3(71), p. 566-579

DOI: 10.1016/j.gca.2006.10.006

Links

Tools

Export citation

Search in Google Scholar

Structure and reactivity of the dolomite (104)–water interface: New insights into the dolomite problem

Journal article published in 2007 by P. Fenter, Z. Zhang, C. Park ORCID, N. C. Sturchio, X. M. Hu, S. R. Higgins
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The structure and reactivity of the dolomite (104)–water interface was probed in situ with high resolution X-ray reflectivity and surface force microscopy at room temperature. Measurements in stoichiometric solutions alternating between saturated and supersaturated (log IAP/K = 2.3) conditions show that the dolomite surface termination readily changes in response to solution composition, but these changes are self-limiting and partially irreversible. The freshly cleaved dolomite (104) surface in contact with the saturated solution has a stoichiometric termination, a distinct surface hydration layer and small surface structural displacements, similar to those observed previously at the calcite–water interface. After reaction with supersaturated solutions dolomite is terminated by a two-layer thick Ca-rich film with substantial structural displacements of the cations. With subsequent exposure to a saturated solution this surface was transformed to an interfacial structure different from the freshly cleaved surface, having a reduced density of the outermost surface layer and a Ca-rich second layer. These results provide new insight into the lack of dolomite growth in modern carbonate environments (i.e., the “dolomite problem”), suggesting that this behavior is associated with a combination of thermodynamic and kinetic factors, including (1) growth of compositionally modified epitaxial CaXMg2−X(CO3)2 layers having thicknesses limited by lattice strain, (2) slow incorporation of Mg during layer growth, and (3) partial irreversibility of surface reactions.