Published in

Elsevier, Anaerobe, (30), p. 102-107, 2014

DOI: 10.1016/j.anaerobe.2014.08.016

Links

Tools

Export citation

Search in Google Scholar

Clostridium perfringens epsilon toxin: The third most potent bacterial toxin known

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Epsilon toxin (ETX) is produced by Clostridium perfringens type B and D strains and causes enterotoxemia, a highly lethal disease with major impacts on the farming of domestic ruminants, particularly sheep. ETX belongs to the aerolysin-like pore-forming toxin family. Although ETX has striking similarities to other toxins in this family, ETX is often more potent, with an LD50 of 100 ng/kg in mice. Due to this high potency, ETX is considered a potential bioterrorism agent and has been classified as a category B biological agent by the Centers for Disease Control and Prevention (CDC) of the United States. The protoxin is converted to an active toxin through proteolytic cleavage performed by specific proteases. ETX is absorbed and acts locally in the intestines then subsequently binds to and causes lesions in other organs, including the kidneys, lungs and brain. The importance of this toxin for veterinary medicine and its possible use as a biological weapon have drawn the attention of researchers and have led to a large number of studies investigating ETX. The aim of the present work is to review the existing knowledge on ETX from C. perfringens type B and D.