Published in

American Physical Society, Physical Review Letters, 4(100)

DOI: 10.1103/physrevlett.100.045502

Links

Tools

Export citation

Search in Google Scholar

Unexpected High Stiffness of Ag and Au Nanoparticles

Journal article published in 2008 by Q. F. Gu, G. Krauss, W. Steurer, F. Gramm, A. Cervellino ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

We studied the compressibility of silver (10 nm) and gold (30 nm) nanoparticles, n-Ag and n-Au, suspended in a methanol-ethanol mixture by x-ray diffraction (XRD) with synchrotron radiation at pressures up to 30 GPa. Unexpectedly for that size, the nanoparticles show a significantly higher stiffness than the corresponding bulk materials. The bulk modulus of n-Au, K(0)=290(8) GPa, shows an increase of ca. 60% and is in the order of W or Ir. The structural characterization of both kinds of nanoparticles by XRD and high-resolution electron microscopy identified polysynthetic domain twinning and lamellar defects as the main origin for the strong decrease in compressibility.