Published in

Meteorological Society of Japan, SOLA : Scientific Online Letters on the Atmosphere, 0(12), p. 1-5

DOI: 10.2151/sola.2016-001

Links

Tools

Export citation

Search in Google Scholar

Dynamical Regional Downscaling Using the JRA-55 Reanalysis (DSJRA-55)

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The Japan Meteorological Agency (JMA) completed its second global atmospheric reanalysis, the Japanese 55-year Reanalysis (JRA-55). However, the horizontal spatial resolution of JRA-55, TL319 (about 55 km), is insufficient for representing the hilly topography of the Japanese islands. Therefore, to reproduce extreme events caused by the hilly topography and their long-term climatological change in Japan, JMA has conducted a dynamical regional downscaling, called DSJRA-55, based on JMA's operational mesoscale model, which has a horizontal resolution of 5 km. DSJRA-55 receives its initial field and boundary conditions from the JRA-55 reanalysis. DSJRA-55 is historically the first products in the world that covers very long term for 55 years with very high resolution in 5 km. Furthermore, DSJRA-55 does not perform data assimilation; instead, initial field and boundary conditions are given at frequent intervals to the downscaled model and short-range forecasts are performed. Then, successive forecasts are connected continuously to create the DSJRA-55 product. In early evaluation results, DSJRA-55 was able to reproduce observed temperature and precipitation during 1958-2012. Although it showed a systematic temperature bias in some regions and seasons and it underestimated the frequencies of heavy-rain days and heavy-rain hours, DSJRA-55 reproduced the overall distribution of orographic precipitation well. DSJRA-55 is therefore expected to be useful for analyzing past extreme events and for statistical studies of long-term climate.