American Institute of Physics, Applied Physics Letters, 2(108), p. 023302, 2016
DOI: 10.1063/1.4939045
Full text: Download
Using a combination of nanoimprint lithography, gate-source/drain self-alignment, and gravure and inkjet printing, we fabricate organic field-effect transistors on flexible plastic substrates with gate-source and gate-drain electrode overlap capacitances of COL < 1 pF, equivalent to channel-width normalised capacitances of C*OL = 0.15–0.23 pF mm−1. We compare photopatterned and nanoimprint lithography patterned channels of L ≈ 3.8 μm and L ≈ 800 nm, respectively. The reduction in L was found on average to result in order of magnitude greater switching frequencies. Gravure printing the dielectric (versus photo-patterning) was found to yield an order of magnitude lower overlap capacitanceC*OL = 0.03 pF mm−1, at the expense of greater processing variation. Inkjet printed p- and n-type polymeric organic semiconductors were used to fabricate organic-field effect transistors with a peak cutoff frequencies of fS = 9.0 ± 0.3 MHz at VGS = 30 V, and transition frequencies of fT = 3.3 ± 0.2 MHz at VGS = 30 V.