Published in

American Association for Cancer Research, Clinical Cancer Research, 1(17), p. 122-133, 2011

DOI: 10.1158/1078-0432.ccr-10-0253

Links

Tools

Export citation

Search in Google Scholar

Antitumor Activity of SNX-2112, a Synthetic Heat Shock Protein-90 Inhibitor, in MET-Amplified Tumor Cells with or without Resistance to Selective MET Inhibition

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Purpose: Heat shock protein-90 (HSP-90), a molecular chaperone required by numerous oncogenic kinases [e.g., HER-2, epidermal growth factor receptor (EGFR), Raf-1, v-Src, and AKT] for conformational stability, has attracted wide interest as a novel target for cancer therapy. HSP-90 inhibition induces degradation of HSP-90 client proteins, leading to a combinatorial inhibition of multiple oncogenic signaling pathways with consecutive growth arrest and apoptosis. MET, a tyrosine kinase that is constitutively active in tumor cells with MET oncogene amplification, has recently been identified as another HSP-90 client. Experimental Design: The aim of our study was to assess the efficacy of SNX-2112, a synthetic HSP-90 inhibitor, in 3 different MET-amplified tumor cell lines (GTL-16, MKN-45, and EBC-1) as well as PR-GTL-16 cells, a GTL-16 subline selected for resistance to the highly selective MET kinase inhibitor PHA-665752. Results: In all cell lines, SNX-2112 led to degradation of MET, HER-2, EGFR, and AKT, as well as abrogation of Ras/Raf/MEK/MAPK and PI3K/AKT signaling, followed by complete cell cycle arrest. SNX-5542, an orally bioavailable prodrug of SNX-2112, displayed significant antitumor efficacy in vivo in nude mice bearing MET-amplified tumor xenografts. Importantly, HSP-90 inhibition maintained its antitumor efficacy in PR-GTL-16 cells both in vitro and in vivo, suggesting that HSP-90 inhibition could be a particularly valuable strategy in MET-amplified tumors that have acquired resistance to MET kinase inhibition. Conclusions: Our study provides evidence for the efficacy of HSP-90 inhibition in MET-amplified cancer cells, particularly when MET kinase inhibitor resistance has emerged. Clin Cancer Res; 17(1); 122–33. ©2011 AACR.