Published in

Elsevier, Journal of Power Sources, (264), p. 254-261, 2014

DOI: 10.1016/j.jpowsour.2014.04.100

Links

Tools

Export citation

Search in Google Scholar

A simple modification of near-infrared photon-to-electron response with fluorescence resonance energy transfer for dye-sensitized solar cells

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Upconversion (UC) Er, Yb-YF3 is introduced into dye-sensitized solar cells (DSSC) through a simple method to investigate the effect of UC particles in photoanode. The utilization of UC phosphor can significantly improve the photocurrent of the cells under both infrared irradiation and sunlight. Fluorescence resonance energy transfer (FRET) and luminescence-mediated energy transfer between UC-YF3 and N719 dye are explored as the main contribution that UC-YF3 made to DSSC. With the multi-efforts of UC-YF3, power conversion efficiency (PCE) of DSSC is improved from 5.18% to 6.22%. Besides, Electron transfer between UC-YF3 and TiO2 is found after sintered at 450 °C, and the PCE value of DSSC is improved further (5.34% → 6.76%). In addition, we explore that UC-YF3 can serve as a scattering material to increase the light absorption capability of the cells and increase the photocurrent of the cells under simulated sunlight irradiation.