Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Journal of Power Sources, (262), p. 279-285, 2014

DOI: 10.1016/j.jpowsour.2014.03.127

Links

Tools

Export citation

Search in Google Scholar

Synthesis of Pt-Pd bimetallic nanoparticles anchored on graphene for highly active methanol electro-oxidation

Journal article published in 2014 by Yuting Zhang, Gang Chang, Honghui Shu, Munetaka Oyama, Xiong Liu, Yunbin He ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A simple, one-step reduction route was employed to synthesize bimetallic Pt-Pd nanoparticles (Pt- PdNPs) supported on graphene (G) sheets, in which the reduction of graphite oxide and metal precursor was carried out simultaneously using ascorbic acid as a soft reductant. The morphology and structure of Pt-PdNPs/G composites were characterized using X-ray diffraction, Transmission Electron Microscopy, Field Emission Scanning Electron Microscopy and X-ray Photoelectron Spectroscopy analysis. The results show that Pt-Pd bimetallic nanoparticles were successfully synthesized and evenly anchored on the graphene sheets. Electrochemical experiments, including cyclic voltammetry and chronoamperometric measurements, were performed to investigate the electrochemical and electrocatalytic properties of the Pt-PdNPs/G composites. It was found that Pt-PdNPs/G composites show better electrocatalytic activity and stability towards the electro-oxidation of methanol than its counterparts such as composites composed of graphene-supported monometallic nanoparticles (PtNPs/G, PdNPs/G) and freestanding (Pt-PdNPs) and Vulcan-supported bimetallic Pt-Pd nanoparticles (Pt-PdNPs/V). The results could be attributed to the synergetic effects of the Pt-Pd nanoparticles and the enhanced electron transfer of graphene. The electrocatalytic activity of Pt-PdNPs/G changed with the Pd content in the Pt-Pd alloy, and the best performance was achieved with a Pt-Pd ratio of 1/3 in an alkaline environment. Our study indicates the potential use of Pt-PdNPs/G as new anode catalyst materials for direct methanol fuel cells.