Published in

American Institute of Physics, Journal of Applied Physics, 15(115), p. 154506

DOI: 10.1063/1.4871466

Links

Tools

Export citation

Search in Google Scholar

Dielectric Interface Effects on Surface Charge Accumulation and Collection towards High-Efficiency Organic Solar Cells

Journal article published in 2014 by Yu-Che Hsiao, Huidong Zang, Ilia Ivanov ORCID, Tao Xu, Luyao Lu, Luping Yu, Bin Hu
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

This paper reports the experimental studies on the effects of dielectric thin-film on surface-charge accumulation and collection by using capacitance-voltage (C-V) measurements under photoexcitation. The dielectric thin-films with different surface polarizations are used with inverted device architecture based on the common photovoltaic PTB7:PC71BM film. In the C-V measurements, the peak-voltage shift with light intensity, namely, Vpeak shift, is particularly used to determine the surface-charge accumulation. We find that the Vpeak shows a smaller shift with light intensity when a higher surface polarization of dielectric thin-film is used. This means that a higher surface polarization of dielectric thin-film can decrease the surface-charge accumulation at electrode interface. However, a lower surface polarization of dielectric thin-film leads to a larger shift with light intensity. This implies that a lower surface polarization of dielectric thin-film corresponds to a larger surface-charge accumulation. This experimental finding indicates that dielectric thin-film plays an important role in the surface-charge accumulation and collection in the generation of photocurrent in organic solar cells. We demonstrate that the device performance can reach the power conversion efficiency of 8.7% when a higher dielectric PFN is used to enhance the surface-charge collection based on the inverted design of ITO/PFN/PTB7:PC71BM/MoO3/Ag.