Published in

Springer Nature [academic journals on nature.com], European Journal of Human Genetics, 12(16), p. 1526-1534, 2008

DOI: 10.1038/ejhg.2008.105

Links

Tools

Export citation

Search in Google Scholar

Genetic diversity patterns at the human clock gene period 2 are suggestive of population-specific positive selection

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Period 2 (PER2) is a key component of the mammalian circadian clock machinery. In humans, genetic variation of clock genes or chronic disturbance of circadian rhythmicity has been implied in the onset of several phenotypes, ranging from periodic insomnias to advanced or delayed sleep phases, to more severe disorders. Peculiar geographic diversity patterns in circadian genes might represent an adaptive response to different light/dark cycles or environmental changes to which different human populations are exposed. To investigate the degree and nature of PER2 gene variation in human populations of different geographic origin, and its possible correlation with different latitudes, we sequenced a 7.7 kb portion of the gene in 20 individuals worldwide. In total, 25 variable sites were identified. The geographic distribution of haplotypes defined by five polymorphic sites was analyzed in 499 individuals from 11 populations from four continents. No evidence for latitude-driven selective effects on PER2 genetic variability was found. However, a high and significant difference in the geographic distribution of PER2 polymorphisms was observed between Africans and non-Africans, suggesting a history of geographically restricted natural selection at this locus. In support of this notion, we found several signals for selection in the sequences. The putative selected haplotype showed a recent coalescent age (8.7 Kyr), and an unusually high frequency in non-African populations. Overall, these findings indicate that a human clock-relevant gene, PER2, might have been influenced by positive selection, and offer preliminary insights into the evolution of this functional class of genes.