Published in

European Geosciences Union, Atmospheric Chemistry and Physics, 15(9), p. 5447-5459, 2009

DOI: 10.5194/acp-9-5447-2009

European Geosciences Union, Atmospheric Chemistry and Physics Discussions, 2(9), p. 6247-6281

DOI: 10.5194/acpd-9-6247-2009

Links

Tools

Export citation

Search in Google Scholar

Day-time concentrations of biogenic volatile organic compounds in a boreal forest canopy and their relation to environmental and biological factors

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract. Atmospheric concentrations of methanol, acetaldehyde, acetone, isoprene and monoterpenes were measured using PTR-MS (proton transfer reaction mass spectrometry) in a boreal forest site in Hyytiälä, Finland (61°51' N, 24°17' E). The concentration measurements were made in the upper canopy of a Scots pine forest during 6 June, 2006–31 August, 2007. Meteorological variables such as temperature and photosynthetically active radiation were measured simultaneously. We also detected biologically sensitive turnover points such as the onsets of photosynthetic activity, onset of growing season, bud burst and stem growth during the annual cycle and compared them to changes in BVOC (biogenic volatile organic compound) concentrations. A typical seasonal pattern of winter minimum and summer maximum was found for all studied compounds except acetaldehyde. Spring time methanol and acetone concentrations increased together with photosynthetic capacity. The day-time daily median BVOC concentrations correlated best with air temperature. The intercorrelations between compounds and the analysis of meteorological conditions indicated that the measured concentrations presented well the local source. During an exceptional summer drought period the concentrations were neither connected with photosynthesis nor transpiration, but they were regulated by some other, yet unknown factors.