Dissemin is shutting down on January 1st, 2025

Published in

Springer Verlag, Lecture Notes in Computer Science, p. 427-435

DOI: 10.1007/978-3-540-45210-2_39

Links

Tools

Export citation

Search in Google Scholar

A Model of Neural Inspiration for Local Accumulative Computation

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

This paper explores the computational capacity of a novel local computational model that expands the conventional analogical and logical dynamic neural models, based on the charge and discharge of a capacity or in the use of a D flip-flop. The local memory capacity is augmented to behave as an S states automaton and some control elements are added to the memory. The analogical or digital calculus equivalent part of the balance between excitation and inhibition is also generalised to include the measure of specific spatio- temporal features over temporal expansions of the input space (dendritic field). This model is denominated as accumulative computation and is inspired in biological short-term memory mechanisms. The work describes the model's general specifications, including its architecture, the different working modes and the learning parameters. Then, some possible software and hardware implementations (using FPGAs) are proposed, and, finally, its potential usefulness in real time motion detection tasks is illustrated.