Published in

Elsevier, Bioorganic and Medicinal Chemistry Letters, 15(22), p. 5055-5058, 2012

DOI: 10.1016/j.bmcl.2012.06.020

Links

Tools

Export citation

Search in Google Scholar

Oxoquinoline acyclonucleoside phosphonate analogues as a new class of specific inhibitors of human immunodeficiency virus type 1

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The emergence of a multidrug-resistant HIV-1 strain and the toxicity of anti-HIV-1 compounds approved for clinical use are the most significant problems facing antiretroviral therapies. Therefore, it is crucial to find new agents to overcome these issues. In this study, we synthesized a series of new oxoquinoline acyclonucleoside phosphonate analogues (ethyl 1-[(diisopropoxyphosphoryl)methyl]-4-oxo-1,4-dihydroquinoline-3-carboxylates 3a-3k), which contained different substituents at the C6 or C7 positions of the oxoquinoline nucleus and an N1-bonded phosphonate group. We subsequently investigated these compounds' in vitro inhibitory effects against HIV-1-infected peripheral blood mononuclear cells (PBMCs). The most active compounds were the fluoro-substituted derivatives 3f and 3g, which presented excellent EC(50) values of 0.4±0.2 μM (3f) and 0.2±0.005 μM (3g) and selectivity index values (SI) of 6240 and 14675, respectively.