Published in

Springer Verlag, International Journal of Earth Sciences

DOI: 10.1007/s00531-015-1280-1

Links

Tools

Export citation

Search in Google Scholar

Extension and inversion structures in the Tethys–Atlantic linkage zone, Algarve Basin, Portugal

Journal article published in 2015 by Adrià Ramos ORCID, Oscar Fernández, Pedro Terrinha, Josep Anton Muñoz
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The Algarve Basin is a Meso-Cenozoic sedimentary basin overlying Carboniferous basement, located in the southwestern margin of the Iberian Peninsula. Its structure reveals a protracted tectonic history comprising various pulses of Mesozoic extension followed by Cenozoic compression. This work deals with the structure along the northern margin, where the Mesozoic extensional structures and Cenozoic inversion structures crop out. The strike of the extensional structures ranges from E–W to N–S, as controlled by a shift from Tethyan-dominated extension in the east to Atlantic-dominated extension in the west. Contractional structures are inverted extensional structures, following their same trends. It is argued that the thickness of the Hettangian evaporite layer exerts a strong control on the structural style throughout the basin during the extensional and inversion episodes. The basin is affected by thick-skinned deformation along the northern margin, where salt is thin or absent, basement involved fault systems and short-cut structures. Basinward, as the Hettangian salt thickens, the margin is affected by thin-skinned deformation, with listric and down-to-the-basin growth faults, diapirism and salt-cored detachment folds. The aim was to discuss the key tectonic features, the relevance of salt, and understand the nature, timing, and significance of all these structures in the regional tectonic evolution.