Published in

American Chemical Society, Organometallics, 14(32), p. 3870-3876, 2013

DOI: 10.1021/om4003347

Links

Tools

Export citation

Search in Google Scholar

Impact of Organoaluminum Compounds on Phenoxyimine Ligands in Coordinative Olefin Polymerization. A Theoretical Study

Journal article published in 2013 by Zygmunt Flisak ORCID, Grzegorz P. Spaleniak, Maria Bremmek
This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The reduction of the phenoxyimine moiety in three individual species—namely free ligand, aluminum complex, and titanium complex—with aluminum alkyls and aluminum hydride has been studied by means of DFT. It was demonstrated that the free phenoxyimine ligand in an equimolar mixture with trimethylaluminum does not undergo reduction. Instead, experimentally observed formation of the six-membered cyclic aluminum–phenoxyimine complex, useful in the ring-opening polymerization of lactones, takes place as the kinetically and thermodynamically favored process. However, it is anticipated that a 2-fold excess of the aluminum compound, especially aluminum hydride, acting on the resulting cyclic complex can convert the imine to the aluminum-subsituted amine functionality easily with an energetic barrier of approximately 10 kcal/mol. Finally, the propensity of the imine moiety in the titanium-based precursor of the coordinative olefin polymerization toward reduction with organoaluminum compounds is revealed and the mechanism of this reaction is also suggested.