Elsevier, Coastal Engineering, (82), p. 64-75
DOI: 10.1016/j.coastaleng.2013.08.007
Full text: Download
Probabilistic estimates for coastal storm erosion volumes are increasingly being sought by contemporary risk based coastal zone management frameworks. Such estimates can be obtained via probabilistic models that incorporate a structural function element which calculates storm erosion (i.e. storm erosion model). Intuitively, the more sophisticated the storm erosion model embedded in the probabilistic model, the more accurate and robust the probabilistic storm erosion volumes should be, albeit at significant additional computational cost. This study assesses the relative performance of three storm erosion models with varying levels of complexity when embedded within Callaghan et al.'s (2008a) probabilistic framework for estimating storm erosion. The storm models tested are: the analytical Kriebel and Dean (1993) model, the more complex semi-empirical SBeach model and the highly complex and process-based XBeach model.