Published in

Elsevier, Journal of Hazardous Materials, (303), p. 137-144, 2016

DOI: 10.1016/j.jhazmat.2015.10.023

Links

Tools

Export citation

Search in Google Scholar

Filling environmental data gaps with QSPR for ionic liquids: Modeling n-octanol/water coefficient

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Ionic liquids (ILs) form a wide group of compounds characterized by specific properties that allow using ILs in different fields of science and industry. Regarding that the growing production and use of ionic liquids increase probability of their emission to the environment, it is important to estimate the ability of these compounds to spread in the environment. One of the most important parameters that allow evaluating environmental mobility of compound is n-octanol/water partition coefficient (KOW). Experimental measuring of the KOW values for a large number of compounds could be time consuming and costly. Instead, computational predictions are nowadays being used more often. The paper presents new Quantitative Structure-Property Relationship (QSPR) model that allows predicting the logarithmic values of KOW for 335 ILs, for which the experimentally measured values had been unavailable. We also estimated bioaccumulation potential and point out which group of ILs could have negative impact on environment.