Dissemin is shutting down on January 1st, 2025

Published in

American Chemical Society, Analytical Chemistry, 19(84), p. 8357-8363, 2012

DOI: 10.1021/ac3019153

Links

Tools

Export citation

Search in Google Scholar

Limited Proteolysis Via Millisecond Digestions in Protease-Modified Membranes

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Sequential adsorption of poly(styrene sulfonate) (PSS) and proteases in porous nylon yields enzymatic membrane reactors for limited protein digestion. Although a high local enzyme density (∼30 mg/cm(3)) and small pore diameters in the membrane lead to digestion in <1 s, the low membrane thickness (170 μm) affords control over residence times at the millisecond level to limit digestion. Apomyoglobin digestion demonstrates that peptide lengths increase as the residence time in the membrane decreases. Moreover, electron transfer dissociation (ETD) tandem mass spectrometry (MS/MS) on a large myoglobin proteolytic peptide (8 kDa) provides a resolution of 1-2 amino acids. Under denaturing conditions, limited membrane digestion of bovine serum albumin (BSA) and subsequent ESI-Orbitrap MS analysis reveal large peptides (3-10 kDa) that increase the sequence coverage from 53% (2 s digestion) to 82% (0.05 s digestion). With this approach, we also performed membrane-based limited proteolysis of a large Arabidopsis GTPase, Root Hair Defective 3 (RHD3) and showed suitable probing for labile regions near the C-terminus to suggest what protein reconstruction might make RHD3 more suitable for crystallization.