Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Progress in Nuclear Energy, (73), p. 113-128, 2014

DOI: 10.1016/j.pnucene.2014.01.016

Links

Tools

Export citation

Search in Google Scholar

A preliminary approach to the ALFRED reactor control strategy

Journal article published in 2014 by Roberto Ponciroli, Antonio Cammi ORCID, Stefano Lorenzi, Lelio Luzzi
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In this paper, a preliminary approach to the definition of a suitable control strategy for the Advanced Lead Fast Reactor European Demonstrator (ALFRED), developed within the European 7th Framework Program, has been undertaken. The Generation IV reactors offer new challenges for what concerns the nuclear power plant control since several constraints both on primary and secondary loops have to be faced, differently from the conventional Light Water Reactors. A simulator of the ALFRED plant has been developed in a previous work (Ponciroli et al., 2014) with the main purpose of studying the system free dynamics and stability features in a control-oriented perspective. Based on the outcomes of these investigations, in the present work, the possibility of adopting decentralized control schemes has been investigated. Accordingly, Single Input Single Output control laws have been applied directly to the selected couples of input–output variables, which have been identified first on the basis of the preliminary plant dynamics analyses, and then confirmed by the indications of the Relative Gain Array method. Afterwards, two different control schemes have been studied depending on the number of available inputs, and then implemented and compared in order to evaluate the effect of each control action on the associated potential control strategy effectiveness. As a last step, the ALFRED control system has been finalized. The regulator design has been set up based on a simultaneous feedforward-feedback scheme incorporating four closed feedback loops. A controlled power reduction and a controlled overpower transient have been simulated in order to assess the performance of the two proposed control schemes. Results show that both the adopted control strategies can assure an efficient control of the thermal power while guaranteeing an effective control of lead and steam temperatures as well. In addition, some non-negligible differences between the two schemes have been observed and discussed in the simulation results of control and controlled variables.