Published in

Materials Research Society, Materials Research Society Symposium Proceedings, (1545), 2013

DOI: 10.1557/opl.2013.957

Links

Tools

Export citation

Search in Google Scholar

Colloidal growth, characterization and optoelectronic study of strong light absorbent inexpensive iron pyrite nanomaterials by using amine ligands for photovoltaic application

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

ABSTRACTHighly pure iron pyrites (FeS2) cubic phased nanocrystals of diameter ∼ 20 nm were synthesized by colloidal method using only amines acting both as a coordinating and surfactant ligands. The details of synthetic condition at temperature 175 °C, 215 °C, 230 °C, 245 °C were compared and elucidated. The best synthetic conditions using an octylamine as a ligand at 230 °C for 2h have been optimized in an inert atmosphere. The XRD measurement shows diffraction peaks of pure cubic iron pyrite crystal structure without any detectable presence of marcasite, pyrrotite, greigyte and other impurity structures. The UV-Vis spectra depict clear absorption onset at 1200 nm in best sample with estimated band gap of ∼1.03 eV. These high pure and nanostructures based iron pyrite processed from solution route may offer excellent manufacturing scalability at very low cost since it can be used as inks for large scale fabrication. The morphological and optical characterizations are carried out by using XRD, UV-Vis, and SEM techniques.