Published in

Royal Society of Chemistry, RSC Advances, 113(5), p. 93433-93437

DOI: 10.1039/c5ra09426g

Links

Tools

Export citation

Search in Google Scholar

An integrated flow and microwave approach to a broad spectrum protein kinase inhibitor

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The protein kinase inhibitor CTx-0152960 (6, 2-((5-chloro-2-((4-morpholinophenyl)amino)pyrimidin-4-yl)amino)-N-methylbenzamide), and the piperazinyl analogue, CTx-0294885 (7, 2-((5-chloro-2-((4-piperazin-1-ylphenyl)amino)pyrimidin-4-yl)amino)-N-methylbenzamide), were prepared using a hybrid flow and microwave approach. The use of flow chemistry approaches avoided the need for Boc-protection of piperidine in the key S N Ar coupling with 1-fluoro-4-nitrobenzene. Microwave coupling of 4-morphilinoaniline 8 and 4-(piperazine-1-yl)aniline 9 with 2-(2,5-dichloropyrimidine-4-ylamino)-N-methylbenzamide 10, proved to be the most efficacious route to the target analogues 6 and 7. This hybrid methodology reduced the number of synthetic steps, gave enhanced overall yields and increased atom economy through step reduction and minimal requirement for chromatographic purification, relative to the original batch synthesis approach.