Published in

Elsevier, Current Applied Physics, 3(14), p. 349-354, 2014

DOI: 10.1016/j.cap.2013.12.010

Links

Tools

Export citation

Search in Google Scholar

Density functional theory calculations for ethylene carbonate-based binary electrolyte mixtures in lithium ion batteries

Journal article published in 2014 by Mahesh Datt Bhatt, Colm O'Dwyer ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The density functional theory (DFT) calculations have been performed to investigate the interaction of Li+ with various organic solvents widely used as Li ion rechargeable battery electrolytes such as ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC); and their EC-based binary mixtures at the level of B3LYP/6-31G (d). The interaction of Li+ with these solvents has been calculated in terms of electronic structures of clusters of the mixtures of organic solvents including a lithium ion. The main objective of our investigation is to help in understanding a stable and enhancing ionic transfer at graphite/electrolyte interface assisted by the mixtures of the solvents. The calculated results favor the stability of EC-based binary mixtures and high EC-content binary mixture systems. In infrared (IR) vibrational spectra, the IR active modes of the solvent show significant changes due to the cation-solvent interaction. Ó 2013 Elsevier B.V. All rights reserved.