Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Molecular Immunology, 2(58), p. 194-200

DOI: 10.1016/j.molimm.2013.11.021

Links

Tools

Export citation

Search in Google Scholar

An ELISA assay with two monoclonal antibodies allows the estimation of free factor H and identifies patients with acquired deficiency of this complement regulator

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Complement factor H (FH) serum levels can be affected by the presence of immune complexes of FH with autoantibodies like in autoimmune forms of atypical haemolytic uraemic syndrome (aHUS) or with C3b in homozygous factor I (FI) deficiency. These complexes reduce the amount of free functional circulating FH. In this study we aimed to determine whether FH levels measurement is disturbed in some pathological conditions and to establish a method for quantifying free and total FH in serum. For that purpose, FH levels were measured in serum samples from aHUS patients having anti-FH autoantibodies or mutations in FH gene, in patients with homozygous FI deficiency, and in healthy controls. Two anti-FH monoclonal antibodies, OX24 and A229, recognizing different functional regions in FH, were used as capture antibodies in an ELISA assay. In the control group and in the group of patients with FH mutations, the FH levels obtained with the two monoclonal antibodies were similar. In patients with anti-FH autoantibodies or with homozygous FI deficiency, however, FH levels measured with both antibodies were significantly different. As these patients had complexes of FH with autoantibodies or C3b, we interpreted that OX24 was detecting total FH and A229 was recognising free FH. Therefore, quantification of FH in plasma using these two monoclonal antibodies provides not only total FH level but also gives an estimation of how much FH circulates free and is thus available to properly control complement activation.