Dissemin is shutting down on January 1st, 2025

Published in

American Institute of Mathematical Sciences (AIMS), Mathematical Biosciences and Engineering, 4(3), p. 571-582

DOI: 10.3934/mbe.2006.3.571

Links

Tools

Export citation

Search in Google Scholar

Visualisation of the numerical solution of partial differential equation systems in three space dimensions and its importance for mathematical models in biology

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Numerical analysis and computational simulation of partial differential equation models in mathematical biology are now an integral part of the research in this field. Increasingly we are seeing the development of partial differential equation models in more than one space dimension, and it is therefore necessary to generate a clear and effective visualisation platform between the mathematicians and biologists to communicate the results. The mathematical extension of models to three spatial dimensions from one or two is often a trivial task, whereas the visualisation of the results is more complicated. The scope of this paper is to apply the established marching cubes volume rendering technique to the study of solid tumour growth and invasion, and present an adaptation of the algorithm to speed up the surface rendering from numerical simulation data. As a specific example, in this paper we examine the computational solutions arising from numerical simulation results of a mathematical model of malignant solid tumour growth and invasion in an irregular heterogeneous three-dimensional domain, i.e., the female breast. Due to the different variables that interact with each other, more than one data set may have to be displayed simultaneously, which can be realized through transparency blending. The usefulness of the proposed method for visualisation in a more general context will also be discussed.