Dissemin is shutting down on January 1st, 2025

Published in

Wiley, European Journal of Immunology, 7(42), p. 1804-1814, 2012

DOI: 10.1002/eji.201141947

Links

Tools

Export citation

Search in Google Scholar

IL-33 attenuates EAE by suppressing IL-17 and IFN-γ production and inducing alternatively activated macrophages

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Interleukin (IL)-33, a member of the IL-1 cytokine family, is an important modulator of the immune system associated with several immune-mediated disorders. High levels of IL-33 are expressed by the central nervous system (CNS) suggesting a potential role of IL-33 in autoimmune CNS diseases. We have investigated the expression and function of IL-33 in the development of experimental autoimmune encephalomyelitis (EAE) in mice. We report here that IL-33 and its receptor ST2 (IL-33Rα) are highly expressed in spinal cord tissue, and ST2 expression is markedly increased in the spinal cords of mice with EAE. Furthermore, ST2-deficient (ST2(-/-) ) mice developed exacerbated EAE compared with wild-type (WT) mice while WT, but not ST2(-/-) EAE mice treated with IL-33 developed significantly attenuated disease. IL-33-treated mice had reduced levels of IL-17 and IFN-γ but produced increased amounts of IL-5 and IL-13. Lymph node and splenic macrophages of IL-33-treated mice showed polarization toward an alternatively activated macrophage (M2) phenotype with significantly increased frequency of MR(+) PD-L2(+) cells. Importantly, adoptive transfer of these IL-33-treated macrophages attenuated EAE development. Our data therefore demonstrate that IL-33 plays a therapeutic role in autoimmune CNS disease by switching a predominantly pathogenic Th17/Th1 response to Th2 activity, and by polarization of anti-inflammatory M2 macrophages.