Published in

Elsevier, Journal of Pharmaceutical and Biomedical Analysis, 4(52), p. 517-524, 2010

DOI: 10.1016/j.jpba.2010.02.005

Links

Tools

Export citation

Search in Google Scholar

Preparation and the kinetic stability of hyaluronan radiolabeled with 111In, 125I and 14C

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Three different procedures for the labeling of hyaluronan (HA) with (111)In, (125)I and (14)C radionuclides were compared, and the kinetic stability of radiolabeled HA under different conditions (saline, artificial gastric juice and plasma) was established. Modification of HA structure with bifunctional chelating agents (DTPA) or with the prosthetic group (tyramine or tyrosine) was essential prior (111)In and (125)I labeling. These chemical labeling techniques were fast, simple and inexpensive, and labeled agents with a high specific activity were obtained. The only disadvantage of these methods was the occurrence of unknown functional groups in the HA molecule requiring further characterization of the compound. Conversely, HA labeling with (14)C by biotechnological synthesis was found to be rather expensive and time-consuming process. Although, the final product (14)C-HA was identical to natural HA its low specific activity presents certain limitation for its application in biological experiments. Stability studies showed that (14)C-HA and (125)I-Tm-HA were stable in all studied mediums. In the case of (125)I-Trs-HA, stability slightly decreased in rat plasma and in artificial gastric juice with increasing time. The least stable was (111)In-DTPA-HA, which degraded completely after 48h in artificial gastric juice. Kinetic stability studies may provide primary information concerning the properties of radiolabeled HA in vitro, which is essential for the use and explanation of its behavior in biological experiments.