Published in

Springer Verlag, Coral Reefs, 1(33), p. 235-240

DOI: 10.1007/s00338-013-1096-z

Links

Tools

Export citation

Search in Google Scholar

Predator density and the functional responses of coral reef fish

Journal article published in 2013 by Ac C. Stier ORCID, James Wilson White
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Predation is a key process driving coral reef fish population dynamics, with higher per capita prey mortality rates on reefs with more predators. Reef predators often forage together, and at high densities, they may either cooperate or antagonize one another, thereby causing prey mortality rates to be substantially higher or lower than one would expect if predators did not interact. However, we have a limited mechanistic understanding of how prey mortality rates change with predator densities. We re-analyzed a previously published observational dataset to investigate how the foraging response of the coney grouper (Cephalopholis fulva) feeding on the bluehead wrasse (Thalassoma bifasciatum) changed with shifts in predator and prey densities. Using a model-selection approach, we found that per-predator feeding rates were most consistent with a functional response that declines as predator density increases, suggesting either antagonistic interactions among predators or a shared antipredator behavioral response by the prey. Our findings suggest that variation in predator density (natural or anthropogenic) may have substantial consequences for coral reef fish population dynamics.