Published in

Nature Research, Nature Genetics, 4(19), p. 399-401, 1998

DOI: 10.1038/1294

Links

Tools

Export citation

Search in Google Scholar

Mutation of the gene encoding human TTF-2 associated with thyroid agenesis, cleft palate and choanal atresia

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Congenital hypothyroidism occurs in one of every three to four thousand newborns, owing to complete or partial failure of thyroid gland development. Although thyroid hypoplasia has recently been associated with mutations in the thyrotropin (TSH) receptor, the cause of thyroid agenesis is unknown. Proteins including thyroid transcription factors 1 (TTF-1; refs 4,5) and 2 (TTF-2; refs 6,7) and Pax8 (refs 8,9) are abundant in the developing mouse thyroid and are known to regulate genes expressed during its differentiation (for example, thyroid peroxidase and thyroglobulin genes). TTF-2 is a member of the forkhead/winged-helix domain transcription factor family, many of which are key regulators of embryogenesis. Here we report that the transcription factor FKHL15 (ref. 11) is the human homologue of mouse TTF-2 (encoded by the Titf2 gene) and that two siblings with thyroid agenesis, cleft palate and choanal atresia are homozygous for a missense mutation (Ala65Val) within its forkhead domain. The mutant protein exhibits impaired DNA binding and loss of transcriptional function. Our observations represent the first description of a genetic cause for thyroid agenesis.