Wiley, Journal of the Royal Statistical Society: Series C, 2(64), p. 339-357, 2014
DOI: 10.1111/rssc.12075
Full text: Download
Summary We consider the joint modelling, analysis and prediction of a longitudinal binary process and a discrete time-to-event outcome. We consider data from a prospective pregnancy study, which provides day level information regarding the behaviour of couples attempting to conceive. Reproductive epidemiologists are particularly interested in developing a model for individualized predictions of time to pregnancy (TTP). A couple's intercourse behaviour should be an integral part of such a model and is one of the main focuses of the paper. In our motivating data, the intercourse observations are a long series of binary data with a periodic probability of success and the amount of available intercourse data is a function of both the menstrual cycle length and TTP. Moreover, these variables are dependent and observed on different, and nested, timescales (TTP is measured in menstrual cycles whereas intercourse is measured on days within a menstrual cycle) further complicating its analysis. Here, we propose a semiparametric shared parameter model for the joint modelling of the binary longitudinal data (intercourse behaviour) and the discrete survival outcome (TTP). Further, we develop couple-based dynamic predictions for the intercourse profiles, which in turn are used to assess the risk for subfertility (i.e. TTP longer than six menstrual cycles).