Published in

American Meteorological Society, Journal of Hydrometeorology, 2(13), p. 504-520, 2012

DOI: 10.1175/jhm-d-11-059.1

Links

Tools

Export citation

Search in Google Scholar

Incoming Solar and Infrared Radiation Derived from METEOSAT: Impact on the Modeled Land Water and Energy Budget over France

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Abstract The Land Surface Analysis Satellite Applications Facility (LSA SAF) project radiation fluxes, derived from the Meteosat Second Generation (MSG) geostationary satellite, were used in the Interactions between Soil, Biosphere, and Atmosphere (ISBA) land surface model (LSM), which is a component of the Surface Externalisée (SURFEX) modeling platform. The Système d’Analyze Fournissant des Renseignements Atmosphériques à la Neige (SAFRAN) atmospheric analysis provides high-resolution atmospheric variables used to drive LSMs over France. The impact of using the incoming solar and infrared radiation fluxes [downwelling surface shortwave (DSSF) and longwave (DSLF), respectively] from either SAFRAN or LSA SAF, in ISBA, was investigated over France for 2006. In situ observations from the Flux Network (FLUXNET) were used for the verification. Daily differences between SAFRAN and LSA SAF radiation fluxes averaged over the whole year 2006 were 3.75 and 2.61 W m−2 for DSSF and DSLF, respectively, representing 2.5% and 0.8% of their average values. The LSA SAF incoming solar radiation presented a better agreement with in situ measurements at six FLUXNET stations than the SAFRAN analysis. The bias and standard deviation of differences were reduced by almost 50%. The added value of the LSA SAF products was assessed with the simulated surface temperature, soil moisture, and the water and energy fluxes. The latter quantities were improved by the use of LSA SAF satellite estimates. As many areas lack a high-resolution meteorological analysis, the LSA SAF radiative products provide new and valuable information.