American Physical Society, Physical review B, 6(88), 2013
DOI: 10.1103/physrevb.88.060409
Full text: Download
RbFe(MoO4)2 is a quasi-two-dimensional (quasi-2D) triangular lattice antiferromagnet (TLA) that displays a zero-field magnetically-driven multiferroic phase with a chiral spin structure. By inelastic neutron scattering, we determine quantitatively the spin Hamiltonian. We show that the easy-plane anisotropy is nearly 1/3 of the dominant spin exchange, making RbFe(MoO4)2 an excellent system for studying the physics of the model 2D easy-plane TLA. Our measurements demonstrate magnetic-field induced fluctuations in this material to stabilize the generic finite-field phases of the 2D XY TLA. We further explain how Dzyaloshinskii-Moriya interactions can generate ferroelectricity only in the zero field phase. Our conclusion is that multiferroicity in RbFe(MoO4)2, and its absence at high fields, results from the generic properties of the 2D XY TLA. ; Comment: 5 pages, 5 figures, accepted in PRB as a Rapid Communication