Published in

American Physical Society, Physical review B, 2(88)

DOI: 10.1103/physrevb.88.020402

Links

Tools

Export citation

Search in Google Scholar

Unraveling the origins of electromechanical response in mixed-phase bismuth ferrite

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The origin of giant electromechanical response in a mixed-phase rhombohedral-tetragonal BiFeO3 thin film is probed using subcoercive scanning probe microscopy based multiple-harmonic measurements. Significant contributions to the strain arise from a second-order harmonic response localized at the phase boundaries. Strain and dissipation data, backed by thermodynamic calculations, suggest that the source of the enhanced electromechanical response is the motion of phase boundaries. These findings elucidate the key role of labile phase boundaries, both natural and artificial, in achieving thin films with giant electromechanical properties.