Published in

American Physical Society, Physical review B, 16(82)

DOI: 10.1103/physrevb.82.165311

Links

Tools

Export citation

Search in Google Scholar

Structure of the indium-rich InSb(001) surface

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The indium-rich InSb(001) surface, that shows the c(8×2) reconstruction at room temperature and a partially disordered phase at 77 K (the low temperature or LT phase), is studied experimentally by means of scanning probe microscopies, low-energy electron diffraction, and angle-resolved photoelectron spectroscopy (ARPES), as well as theoretically, using the density-functional theory (DFT). The experimental studies are done both at room temperature and at cryogenic temperatures. No metallic surface bands are found using ARPES, consequently the idea of charge-density waves as a possible explanation of the LT phase suggested previously by Goryl et al. [Surf. Sci. 601, 3605 (2007)] is discarded. On the other hand it is shown that an essential core of the surface structure is described by the so-called ζ model which has the c(8×2) symmetry. However, on top of this basic structure there are additional not fully occupied indium-atom rows. Vacancies/atoms in these rows rapidly fluctuate at room temperature while, upon cooling down, they stabilize to form a sublattice also of c(8×2) symmetry. Furthermore, this sublattice has shifted mirror symmetry axes (relating to those of the underlying ζ lattice) therefore the surface symmetry is lowered from c2mm to p2 and structural domains are formed. This occurs with no significant core ζ lattice distortions but dense domain borders lead to significant disorder in the top atomic layer. DFT calculations confirm that the postulated ζ-like structure with additional 50% occupied indium-atom rows is stable on the InSb (001) surface. Calculated, in the Tersoff-Hammann approximation, scanning tunneling microscopy (STM) images of the relaxed surface structure agree well with experimental STM images.