Published in

American Physical Society, Physical review B, 15(81), 2010

DOI: 10.1103/physrevb.81.155311

Links

Tools

Export citation

Search in Google Scholar

Structural properties and energetics of intrinsic and Si-doped GaAs nanowires: First-principles pseudopotential calculations

Journal article published in 2010 by Nahid Ghaderi, Maria Peressi, Nadia Binggeli ORCID, Hadi Akbarzadeh
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

We investigate by first-principles pseudopotential calculations the structural properties and the energetics of undoped and Si-doped unpassivated GaAs nanowires (NWs). On the basis of total energy calculations for the undoped NWs as a function of diameter we find that, in contrast to the bulk phase, wurtzite (WZ) NWs are more stable than zincblende (ZB) NWs for diameters up to about 50 Angstrom. We also investigate the preferential position of Si dopants in GaAs WZ NWs: we find that donors segregate to the surface, while acceptors prefer inner positions. On the basis of the formation energy study, the stability ranges for Si donor and acceptor sites are similar to the bulk ZB case, with a slight increase in the stability range for donor sites. However, in contrast to acceptors, donors preferentially segregate to surface dangling-bond sites at large NW diameters, and act as deep impurities, rather than shallow donors, thus hindering n-type conductivity. This could contribute to explain the preferential p-type behavior which was observed in recent experiments on Si-doped NWs grown by molecular-beam epitaxy, in addition to other possible effects, including, e.g., the kinetics of Si incorporation.