Published in

2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)

DOI: 10.1109/embc.2013.6609948

Links

Tools

Export citation

Search in Google Scholar

Stochastic relevance analysis of epileptic EEG signals for channel selection and classification

Journal article published in 2013 by L. Duque Munoz ORCID, C. Guerrero Mosquera, G. Castellanos Dominguez
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Time-frequency decompositions (TFDs) are well known techniques that permit to extract useful information or features from EEG signals, being necessary to distinguish between irrelevant information and the features effectively representing the subjacent physiological phenomena, according to some evaluation measure. This work introduces a new method to obtain relevant features extracted from time-frequency plane for epileptic EEG signals. Particularly, EEG features are extracted by common spectral methods such as short time Fourier transform (STFT), wavelets transform and Empirical Mode Decomposition (EMD). Then, each method is evaluated by Stochastic Relevance Analysis (SRA) that is further used for EEG classification and channel selection. The classification measures are carried out based on the performance of the k-NN classifier, while the channels selected are validated by visual inspection and topographic scalp map. The study uses real and multi-channel EEG data and all the experiments have been supervised by an expert neurologist. Results obtained in this paper show that SRA is a good alternative for automatic seizure detection and also opens the possibility of formulating new criteria to select, classify or analyze abnormal EEG channels.