Published in

Elsevier, Journal of Biological Chemistry, 44(283), p. 30064-30072, 2008

DOI: 10.1074/jbc.m803184200

Links

Tools

Export citation

Search in Google Scholar

Replacement of a Phenylalanine by a Tyrosine in the Active Site Confers Fructose-6-phosphate Aldolase Activity to the Transaldolase of Escherichia coli and Human Origin

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Based on a structure-assisted sequence alignment we designed 11 focused libraries at residues in the active site of transaldolase B from Escherichia coli and screened them for their ability to synthesize fructose 6-phosphate from dihydroxyacetone and glyceraldehyde 3-phosphate using a newly developed color assay. We found one positive variant exhibiting a replacement of Phe(178) to Tyr. This mutant variant is able not only to transfer a dihydroxyacetone moiety from a ketose donor, fructose 6-phosphate, onto an aldehyde acceptor, erythrose 4-phosphate (14 units/mg), but to use it as a substrate directly in an aldolase reaction (7 units/mg). With a single amino acid replacement the fructose-6-phosphate aldolase activity was increased considerably (>70-fold compared with wild-type). Structural studies of the wild-type and mutant protein suggest that this is due to a different H-bond pattern in the active site leading to a destabilization of the Schiff base intermediate. Furthermore, we show that a homologous replacement has a similar effect in the human transaldolase Taldo1 (aldolase activity, 14 units/mg). We also demonstrate that both enzymes TalB and Taldo1 are recognized by the same polyclonal antibody.