Published in

Elsevier, Tuberculosis, (96), p. 1-12, 2016

DOI: 10.1016/j.tube.2015.10.004

Links

Tools

Export citation

Search in Google Scholar

Ultra low dose aerosol challenge with Mycobacterium tuberculosis leads to divergent outcomes in rhesus and cynomolgus macaques

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Well characterised animal models that can accurately predict efficacy are critical to the development of an improved TB vaccine. The use of high dose challenge for measurement of efficacy in Non-human primate models brings the risk that vaccines with the potential to be efficacious against natural challenge could appear ineffective and thus disregarded. Therefore, there is a need to develop a challenge regimen that is more relevant to natural human infection. This study has established that ultra-low dose infection of macaques via the aerosol route can be reproducibly achieved and provides the first description of the development of TB disease in both rhesus and cynomolgus macaques following exposure to estimated retained doses in the lung of less than 10 CFU of Mycobacterium tuberculosis. CT scanning in vivo and histopathology revealed differences in the progression and burden of disease between the two species. Rhesus macaques exhibited a more progressive disease and cynomolgus macaques showed a reduced disease burden. The ability to deliver reproducible ultra-low dose aerosols to macaques will enable the development of refined models of M. tuberculosis infection for evaluation of the efficacy of novel tuberculosis vaccines that offers increased clinical relevance and improved animal welfare.