Published in

2014 IEEE Geoscience and Remote Sensing Symposium

DOI: 10.1109/igarss.2014.6947278

Links

Tools

Export citation

Search in Google Scholar

Ground-based scatterometer observations of snow-covered freshwater lake ice using UW-SCAT (9.6/17.2 GHz)

Proceedings article published in 2014 by Grant Gunn, Claude Duguay, Giovanni Macelloni, Marco Brogioni ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Winter season backscatter (σ°) evolution of snow covered lake ice was observed by ground-based University of Waterloo X-(9.6 GHz) and Ku-band (17.2 GHz) scatterometers (UW-SCAT) during the winter of 2010-11. The UW-SCAT post-processing procedure allowed for the observation of σ° at the surface (snow/ice interface, ice types) and the ice volume. Observations indicated that: (1) σ° associated with the development of tubular bubbles within the ice volume causes double-bounce of the signal and high returns at X- and Ku-bands; (2) ice types at the surface (grey ice) composed of high density spherical micro-bubbles result in σ° increases at both X- and Ku-bands; and (3) the removal of snow overlying ice results in a drop in Ku-band σ° up to 5.5 dB, exhibiting sensitivity to snow water equivalent.