Dissemin is shutting down on January 1st, 2025

Published in

American Physical Society, Physical review E: Statistical, nonlinear, and soft matter physics, 1(84)

DOI: 10.1103/physreve.84.016212

Links

Tools

Export citation

Search in Google Scholar

Homoclinic orbits and chaos in a pair of parametrically-driven coupled nonlinear resonators

Journal article published in 2011 by Eyal Kenig, Yuriy A. Tsarin, Ron Lifshitz ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

We study the dynamics of a pair of parametrically driven coupled nonlinear mechanical resonators of the kind that is typically encountered in applications involving microelectromechanical systems (MEMS) and nanoelectromechanical systems (NEMS). We take advantage of the weak damping that characterizes these systems to perform a multiple-scales analysis and obtain amplitude equations, describing the slow dynamics of the system. This picture allows us to expose the existence of homoclinic orbits in the dynamics of the integrable part of the slow equations of motion. Using a version of the high-dimensional Melnikov approach, developed by G. Kovačič and S. Wiggins [Physica D 57, 185 (1992)], we are able to obtain explicit parameter values for which these orbits persist in the full system, consisting of both Hamiltonian and non-Hamiltonian perturbations, to form so-called Šilnikov orbits, indicating a loss of integrability and the existence of chaos. Our analytical calculations of Šilnikov orbits are confirmed numerically.