Published in

American Association for the Advancement of Science, Science, 5974(328), p. 76-80, 2010

DOI: 10.1126/science.1184167

Links

Tools

Export citation

Search in Google Scholar

Frictional Characteristics of Atomically Thin Sheets

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Thin Friction The rubbing motion between two surfaces is always hindered by friction, which is caused by continuous contacting and attraction between the surfaces. These interactions may only occur over a distance of a few nanometers, but what happens when the interacting materials are only that thick? Lee et al. (p. 76 ; see the Perspective by Müser and Shakhvorostov ) explored the frictional properties of a silicon tip in contact with four atomically thin quasi–two dimensional materials with different electrical properties. For all the materials, the friction was seen to increase as the thickness of the film decreased, both for flakes supported by substrates and for regions placed above holes that formed freely suspended membranes. Placing graphene on mica, to which it strongly adheres, suppressed this trend. For these thin, weakly adhered films, out-of-plane buckling is likely to dominate the frictional response, which leads to this universal behavior.