Published in

Cell Press, Cell Reports, 4(13), p. 771-782, 2015

DOI: 10.1016/j.celrep.2015.09.044

Links

Tools

Export citation

Search in Google Scholar

Antagonizing Neuronal Toll-like Receptor 2 Prevents Synucleinopathy by Activating Autophagy

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Impaired autophagy has been implicated in many neurodegenerative diseases, such as Parkinson's disease (PD), and might be responsible for deposition of aggregated proteins in neurons. However, little is known about how neuronal autophagy and clearance of aggregated proteins are regulated. Here, we show a role for Toll-like receptor 2 (TLR2), a pathogen-recognizing receptor in innate immunity, in regulation of neuronal autophagy and clearance of α-synuclein, a protein aggregated in synucleinopathies, including in PD. Activation of TLR2 resulted in the accumulation of α-synuclein aggregates in neurons as a result of inhibition of autophagic activity through regulation of the AKT/mTOR pathway. In contrast, inactivation of TLR2 resulted in autophagy activation and increased clearance of neuronal α-synuclein, and hence reduced neurodegeneration, in transgenic mice and in in vitro models. These results uncover roles of TLR2 in regulating neuronal autophagy and suggest that the TLR2 pathway may be targeted for autophagy activation strategies in treating neurodegenerative disorders.