Published in

Elsevier, Hydrometallurgy, (158), p. 157-164, 2015

DOI: 10.1016/j.hydromet.2015.10.003

Links

Tools

Export citation

Search in Google Scholar

Magnetic resonance imaging characterisation of the influence of flowrate on liquid distribution in drip irrigated heap leaching

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Liquid irrigation is one of the key process control parameters following the construction of an ore leaching heap. This study uses 3D magnetic resonance imaging (MRI) to examine non-invasively the effect of liquid flowrate changes on heap hydrology when drip irrigation is used. Experimental results from a vertical column show that the increase in flowrate causes an increase in the number of rivulets in the ore bed. The new rivulets were found to be thicker, and their development caused an increase in liquid-solid contacting area which is considered advantageous for metal ion recovery. Experiments performed on larger samples showed that the effects of flowrate changes were limited to the region directly below the drip emitter because the increase in flowrate caused an increase in macro-pore flow and not capillary retention of liquid. Therefore the increase in flowrate was not found to perturb liquid distribution patterns in a way that would be substantially advantageous to heap leaching recoveries.