Published in

Elsevier, Molecular and Cellular Neuroscience, (70), p. 30-41, 2016

DOI: 10.1016/j.mcn.2015.11.007

Links

Tools

Export citation

Search in Google Scholar

Central and peripheral defects in motor units of the diaphragm of spinal muscular atrophy mice

Journal article published in 2015 by Anuja Neve, Judith Trüb, Smita Saxena ORCID, Daniel Schümperli ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Spinal muscular atrophy (SMA) is characterized by motoneuron loss and muscle weakness. However, the structural and functional deficits that lead to the impairment of the neuromuscular system remain poorly defined. By electron microscopy, we previously found that neuromuscular junctions (NMJs) and muscle fibres of the diaphragm are among the earliest affected structures in the severe mouse SMA model. Because of certain anatomical features, i.e. its thinness and its innervation from the cervical segments of the spinal cord, the diaphragm is particularly suitable to characterize both central and peripheral events. Here we show by immunohistochemistry that, at postnatal day 3, the cervical motoneurons of SMA mice receive less stimulatory synaptic inputs. Moreover, their mitochondria become less elongated which might represent an early stage of degeneration. The NMJs of the diaphragm of SMA mice show a loss of synaptic vesicles and active zones. Moreover, the partly innervated endplates lack S100 positive perisynaptic Schwann cells (PSCs). We also demonstrate the feasibility of comparing the proteomic composition between diaphragm regions enriched and poor in NMJs. By this approach we have identified two proteins that are significantly upregulated only in the NMJ-specific regions of SMA mice. These are apoptosis inducing factor 1 (AIFM1), a mitochondrial flavoprotein that initiates apoptosis in a caspase-independent pathway, and four and a half Lim domain protein 1 (FHL1), a regulator of skeletal muscle mass that has been implicated in several myopathies.