Published in

American Institute of Physics, Review of Scientific Instruments, 8(81), p. 086102

DOI: 10.1063/1.3476317

Links

Tools

Export citation

Search in Google Scholar

Note: Dead time causes and correction method for single photon avalanche diode devices

Journal article published in 2010 by L. Neri, S. Tudisco, F. Musumeci, A. Scordino, G. Fallica, M. Mazzillo, M. Zimbone ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Single photon avalanche diode (SPAD) is the new generation of Geiger-Muller (GM) detectors, developed with semiconductor technology, and able to detect single photons, mainly in visible range. In this work we study the signal generation process and the dead time (DT) mechanisms of the device under a constant light regime. According to our results, it is possible to discriminate low rate signals from afterpulse and noise production and, moreover, to overcome the saturation effect due to the dead time losses. Starting from hybrid DT model [S. H. Lee and R. P. Gardner, Appl. Radiat. Isot. 53, 731 (2000)] we have been able to evaluate the real amount of incident photon rate up to 10(7) cps using a passive quenched device with 0.97 mus total dead time. In this way the passive quenched SPAD achieves the same performance of the active quenched one showing that relatively complex data analysis and complex device implementation are comparable solutions for constant light measurement. We also analyze some effects, lacking in GM counter, which should be introduced in the analysis of semiconductor device, as afterpulse, reduced photon detection efficiency, and noise production.