Published in

Society of Photo-optical Instrumentation Engineers, Proceedings of SPIE, 2013

DOI: 10.1117/12.2042246

Links

Tools

Export citation

Search in Google Scholar

Cavity and quartz enhanced photo-Acoustic mid-IR sensor

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

We report on a novel intracavity quartz enhanced photoacoustic (I-QEPAS) gas sensing technique taking advantage from both the high Q-factor of standard tuning forks and the power build-up of a high-finesse optical resonator. This first prototype employs a distributed feedback quantum cascade laser operating at 4.3 m. CO 2 has been selected as gas target. Preliminary results demonstrate an improved sensitivity, close to the cavity enhancement factor (500) times the optical coupling efficiency (about 0.5), with respect to standard QEPAS technique. The detection limit was pulled from 7 ppm (obtained with standard QEPAS) down to 32 ppb, corresponding to normalized noise-equivalent absorption in the 10 -9 W·cm -1 ·Hz -1/2 range.