Links

Tools

Export citation

Search in Google Scholar

Adaptive total variation image deconvolution: A majorization-minimization approach

Journal article published in 2006 by Jose M. Bioucas Dias, M ´ Ario, M. A. T. Figueiredo ORCID, J. P. Oliveira
This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

This paper proposes a new algorithm for total variation (TV) image deconvolution under the assumptions of linear observations and additive white Gaussian noise. By adopting a Bayesian point of view, the regularization parameter, modeled with a Jeffreys' prior, is integrated out. Thus, the resulting crietrion adapts itself to the data and the critical issue of selecting the regularization parameter is sidestepped. To implement the resulting criterion, we propose a majorization-minimizationapproach, which consists in replacing a difficult optimization problem with a sequence of simpler ones. The computational complexity of the proposed algorithm is O(N) for finite support convolutional kernels. The results are competitive with recent state-of-the-art methods.